當前位置:首頁 > 百科知識 > 太陽能光伏 > 正文

太陽能薄膜電池

太陽能薄膜電池,重量輕,厚度薄??蓮澢讛y帶。太陽能薄膜電池有:銅銦硒太陽能薄膜電池 硅粒晶體太陽能電池。

  簡介

  太陽能薄膜電池,重量輕,厚度薄.可彎曲,易攜帶.

  傳統(tǒng)硅晶電池由于由硅晶體組成,電池主要部分易碎,易產生隱形裂紋,大多有一層鋼化玻璃作為防護,造成重量大,攜帶不便,抗震能力差,造價高,效率或多或少降低.

  太陽能薄膜電池克服了上述缺點,但并沒有傳統(tǒng)硅晶電池轉化效率高.太陽能薄膜電池的轉化效率之提升是太陽能科技界正在研究的主方向.由于尚未完全成熟,大規(guī)模生產仍有一定風險,但勢必會在太陽能領域占有重要地位.其發(fā)展前景非常看好。

  太陽能薄膜電池有:銅銦硒太陽能薄膜電池硅粒晶體太陽能電池

  定義

  非晶硅(a-Si)太陽電池是在玻璃(glass)襯底上沉積透明導電膜(TCO),然后依次用等離子體反應沉積p型、i型、n型三層a-Si,接著再蒸鍍金屬電極鋁(Al).光從玻璃面入射,電池電流從透明導電膜和鋁引出,其結構可表示為glass/TCO/pin/Al,還可以用不銹鋼片、塑料等作襯底。硅材料是太陽電池的主導材料,在成品太陽電池成本份額中,硅材料占了將近40%,而非晶硅太陽電池的厚度不到1μm,不足晶體硅太陽電池厚度的1/100,這就大大降低了制造成本,又由于非晶硅太陽電池的制造溫度很低(~200℃)、易于實現(xiàn)大面積等優(yōu)點,使其在薄膜太陽電池中占據(jù)首要地位,在制造方法方面有電子回旋共振法、光化學氣相沉積法、直流輝光放電法、射頻輝光放電法、濺謝法和熱絲法等。特別是射頻輝光放電法由于其低溫過程(~200℃),易于實現(xiàn)大面積和大批量連續(xù)生產,現(xiàn)成為國際公認的成熟技術。在材料研究方面,先后研究了a-SiC窗口層、梯度界面層、μC-SiCp層等,明顯改善了電池的短波光譜響應.這是由于a-Si太陽電池光生載流子的生成主要在i層,入射光到達i層之前部分被p層吸收,對發(fā)電是無效的.而a-SiC和μC-SiC材料比p型a-Si具有更寬的光學帶隙,因此減少了對光的吸收,使到達i層的光增加;加之梯度界面層的采用,改善了a-SiC/a-Si異質結界面光電子的輸運特性.在增加長波響應方面,采用了絨面TCO膜、絨面多層背反射電極(ZnO/Ag/Al)和多帶隙疊層結構,即glass/TCO/p1i1n1/p2i2n2/p3i3n3/ZnO/Ag/Al結構.絨面TCO膜和多層背反射電極減少了光的反射和透射損失,并增加了光在i層的傳播路程,從而增加了光在i層的吸收.多帶隙結構中,i層的帶隙寬度從光入射方向開始依次減小,以便分段吸收太陽光,達到拓寬光譜響應、提高轉換效率之目的。在提高疊層電池效率方面還采用了漸變帶隙設計、隧道結中的微晶化摻雜層等,以改善載流子收集。

  產業(yè)發(fā)展

  已經能進行產業(yè)化大規(guī)模生產的薄膜電池主要有3種:硅基薄膜太陽能電池、銅銦鎵硒薄膜太陽能電池(CIGS)、碲化鎘薄膜太陽能電池(CdTe)。

  薄膜太陽能電池雖然早已出現(xiàn),但由于光電轉換效率低、衰減率(光致衰退率)較高等問題,前些年未引起業(yè)界的足夠關注,市場占有率很低。隨著其技術的不斷進步,光電轉換效率得到迅速提高,約提升了30%-40%,雖然仍然與晶體硅電池相比有很大差距,但其用料少、工藝簡單、能耗低,成本有一定優(yōu)勢,越來越被業(yè)界所接受。因此,薄膜太陽能電池產業(yè)得到較快發(fā)展。[1]


內容來自百科網